Naming and Drawing Alkenes Worksheet and Key

1) Draw and name the *cis* and *trans* condensed structure of:

cis condensed structure:	trans condensed structure:
name:	name:

- 2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
- a)

Name: ______

b)

$$CH_2 = CHCH_2CH_2CH_2CH_2CH_3$$

Name:

c)

$$CH_3CH CH_2CH_2 CH = CH CH_2CH_3$$
 CH_3

Name:

Be careful to correctly identify carbon #1.....

d)

$$CH_3$$
 $C = C$ H

Name: _____

f)	$^{ m H_2CH_3}$ Name: $_{ m }$ Name: $_{ m }$ Name: $_{ m }$ Name: $_{ m }$ nd skeletal structure of the following all	
a) 1-hexene		
line-bond structure	condensed structure	skeletal structure

b) 4-isopropyl-2-methyl-1-nonene

line-bond structure	condensed structure	skeletal structure

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure

d) trans-2-pentene

line-bond structure	condensed structure	skeletal structure

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure

Key

1) Draw and name the *cis* and *trans* condensed structure of:

cis condensed structure:

$$CH_3$$
 $C = C$
 H
 CH_2CH_3
 H

name: cis-2-pentene

trans condensed structure:

$$CH_3$$
 $C = C$
 CH_2CH_3

name: trans-2-pentene

- 2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
- a١

Name: ____1- pentene_____

b)

$$CH_2 = CHCH_2CH_2CH_2CH_2CH_3$$

Name: 1- heptene

c)

$$CH_3CH CH_2CH_2 CH = CH CH_2CH_3$$

$$CH_3$$

Name: _____7- methyl-3-octene

Note: Carbon #1 is the carbon nearest to the double bond

d)

$$CH_3$$
 $C = C$
 H

Name: <u>cis-2-butene</u>

e)

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \\ \text{H} \end{array} \\ \begin{array}{c} \text{C} = \text{C} \\ \\ \text{CH}_2\text{CH}_2\text{CH}_3 \end{array}$$

Name: _____trans-4-nonene _____

f)

Name: _____cis-3-heptene

3. Draw the line bond, condensed, and skeletal structure of the following alkenes.

a) 1-hexene

line-bond structure	condensed structure	skeletal structure
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CH_2 = CHCH_2CH_2CH_2CH_3$	

b) 4-isopropyl-2-methyl-1-nonene

line-bond structure	condensed structure	skeletal structure
H H-C-H H H H H H H H H H-C-C-C-C-C-C-C-H H H H H H H H H H H H H H H H H	CH_3 $CH_2 = CCH_2CHCH_2CH_2CH_2CH_2CH_3$ CH_3CHCH_3	Note: There are several correct ways to draw many of these skeletal structures.

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure
H H H H H H H - C - C = C - C - C - C - H H H H H H Note: cis/trans is not displayed in line- bond structures (only displayed in condensed and skeletal structures).	CH_3 $C = C$ $CH_2CH_2CH_3$ H	

d) trans-2-pentene

line-bond structure	condensed structure	skeletal structure
H H H H H H - C - C = C - C - C - H H H H Note: cis/trans is not displayed in line-bond structures (only displayed in condensed and skeletal structures).	CH_3 $C = C$ CH_2CH_3	

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH_3 CH_3CH $C = C$ H	