Le Chatelier's Principle Worksheet and Key

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

$$2CO_{(g)} + O_{2(g)} \rightleftharpoons 2CO_{2(g)}$$

a. The amount of O_2 is increased.

b. The amount of CO₂ is decreased?

- c. The amount of oxygen gas is decreased.
- 2. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

$$C_{(s)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_{2(g)}$$

- a. adding $H_2O_{(g)}$
- b. removing carbon
- c. removing H₂
- d. adding carbon
- 3. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

- a. adding PCl₃
- b. removing Cl₂
- c. removing PCl₃
- d. adding Cl₂

Le Chatelier's Principle Key

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

 $2CO_{(g)} + O_{2(g)} \rightleftharpoons 2CO_{2(g)}$

a. The amount of O_2 is increased. forward b. The amount of CO_2 is decreased? forward c. The amount of oxygen gas is decreased. reverse

2. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

 $C_{(s)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_{2(g)}$

a. adding $H_2O_{(g)}$ forward

- b. removing carbon reverse
- c. removing H₂ forward
- d. adding carbon forward
- 3. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: **forward**, **reverse**, **or no change**.

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

a. adding PCl₃ reverse

b. removing Cl₂ forward

- c. removing PCl₃ forward
- d. adding Cl₂ reverse